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ABSTRACT: Deep learning refers to a set of computer models that have recently been used to make 

unprecedented progress in the way computers extract information from images. These algorithms have been 

applied to tasks in numerous medical specialties, most extensively radiology and pathology, and in some cases 

have attained performance comparable to human experts. Furthermore, it is possible that deep learning could 

be used to extract data from medical images that would not be apparent by human analysis and could be used to 

inform on molecular status, prognosis, or treatment sensitivity. In this review, we outline the current 

developments and state-of-the-art in applying deep learning for cancer diagnosis, and discuss the challenges in 

adapting the technology for widespread clinical deployment. 

 

I. INTRODUCTION TO DEEP LEARNING 

Deep learning (DL; see Glossary) consists of a set of machine learning algorithms, also known as deep 

neural networks (DNNs), that have achieved unprecedented success over the past decade in processing forms of 

natural data, such as images, text, and speech [1]. Machine learning, broadly speaking, applies statistical 

methods to training data to automatically adjust the parameters of a model, rather than a programmer needing to 

set them manually. Histori-cally, machine learning algorithms such as random forests and support vector 

machines have performed well with structured forms of data, but have struggled with data that does not have a 

consistent organization. Somewhat paradoxically, even years after defeating human chess grandmasters, it was 

still impossible for computers to perform image recognition tasks that would be trivial for a child. Slow progress 

was being made in this area, but in 2012, Krizhevsky et al. used a form of DNN called a convolutional neural 

network (CNN) to make a major jump in the accuracy of general image recognition [2], and since then, CNNs 

have become the de facto approach for most computer vision tasks (Box 1 and Figure 1). DL algorithms have 

further achieved success as critical elements in systems that play games that were thought to exemplify human 

intuition or instinct, such as the strategy game Go [3] and poker [4]. 

 

II. HIGHLIGHTS 
Several factors, including advances in computational techniques and algo-rithms, the availability of 

graphical pro-cessing units, and the assembly of large training datasets, have led to the establishment of DL as 

the domi-nant method for computer vision tasks. 

Competitions in image processing have focused effort on particular tasks and have been useful in 

revealing which approaches are the most successful. 

DL algorithms have attained expert level performance in the detection of breast cancer metastases in 

lymph nodes, and demonstrated superior accuracy compared with previous fea-ture-engineered methods of 

histology analysis. 

DL can facilitate large-scale morphol-ogy-based research, such as in the recent mapping and analysis 

of tumor infiltrating lymphocyte patterns in thou-sands of specimens from the Cancer Genome Atlas digital 

slide repository. 
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The theoretical underpinnings of DNNs have existed for decades, but several synergistic developments 

have led to a recent popularization [5]. Advances in the mathematical methods used to train DNNs, such as 

improvements in back-propagation, have addressed many of the issues that historically made them challenging 

to optimize, particularly as they become larger [6–9]. These models require large amounts of training data, and 

the proliferation of online databases over the past two decades has provided exponential increases in the amount 

of image and text data available. The widespread availability and affordability of graphical processing units 

(GPUs), largely driven by the video game industry, has provided the computational power needed to train DNNs 

in a reasonable time.  

 

Box 1. Technical Overview of CNN Training 

Traditional neural networks are composed of fully connected layers stacked from the input to the 

eventual output layer. CNNs are a form of neural network with three types of layers convolutional, pooling, and 

fully connected. The fully connected layers in a typical neural network are not optimized to realize local patterns 

that depend on the proximity of features, an important capability for image analysis. Convolutional layers 

overcome thischallenge by imitating the behavior of the human eye and sampling local spots of information 

thatoverlap to some extent. Computationally,this task is executed by splitting the input image into overlapping 

tiles that are defined by a manually selected filter size and stride. Each tile is then transformed into a single 

numerical value through multiplication with a kernel. The size of the resulting feature map can be further 

reduced bycombining adjacent tiles with a max-pooling layer,which keeps the maximumvalue from a set of 

adjacent tiles, thereby retaining maximal information from the area. An activation function applied to the kernel 

output introduces nonlinearity and ensures that values are comparable across tiles. This procedure of sequential 

convolution and pooling can be iterated to generate increasingly compact feature maps of the input data, the last 

of which serves as input for a fully connected set of layers. Each node (neuron) in these layers is connected to 

all the nodes in the preceding layer, and transforms their output by a set of weights, with the addition of a layer-

specific constant value, called a bias term, to ensure that the output from the node is non-zero. The final layer is 

typically a softmax function that converts the activations of the preceding layer into a range of probabilities 

across the set of output classes. As with other neural networks, a CNN is trained end-to-end, from the input 

image to the output classification, using back-propagation. A preselected cost function calculates the error in the 

output, a measure of how far the predictions are from the ground truth. The optimization function, such as 

stochastic gradient descent, dictates how this cost propagates through the weights of each layer. Using back-

propagation iteratively, the feature maps gradually shift to select features from the input that are increasingly 

informative for the classification task. Once the calculated cost becomes stable over multiple iterations of the 

training set, training can be stopped, and new samples predicted with the learnt weights. development of user-

friendly, open source programming libraries like Keras and Tensorflow has significantly lowered the barrier to 

entry for non-computer scientists to engage in DL research [10] (Table 1). 

Over the past several years, research into the medical applications for DL has accelerated, with cancer 

being the most common disease investigated and images the dominant data type [11]. The applications of DL 

for cancer diagnosis can be broadly divided into two uses that we label automated analysis and knowledge 

discovery. Automated analysis refers to the use of models for routine clinical diagnostic tasks, in which expert 

level performance has been reached in several medical fields [12–14], while knowledge discovery aims to 

uncover new patterns in data that may inform on diagnosis, prognosis, treatment response, or genomic status 

(Table 2). In this review, we summarize DL applications in cancer research pertaining to radiology and 

pathology, the image-based specialties that are involved in virtually every cancer diagnosis, and consider the 

future impact of artificial intelligence (AI) technology on medical practice. 

 

DL in Radiology 

The field of radiology has long been at the forefront of incorporating computers into clinical practice, 

beginning with their use for administration and billing in the 1960s [15]. Computed tomography (CT) and 

magnetic resonance imaging (MRI), which were both invented in the early 1970s and proliferated in the clinic 

through the 1980s, acquire images digitally; however, limitations in computer storage required hard copies of 

these scans to initially be developed on radiographic film [16]. The later development of Picture Archiving and 

Communication Systems (PACS) in the 1990s enabled the transition to a fully digital workflow, and today most 

radiographic imaging in Canada and the USA is obtained, viewed, and stored digitally. In the early 2000s, the 

US Congress approved the use of computer-aided diagnostics for screening mammography under Medicare 

coverage, as well as the replacement of transcrip-tionists by text recognition systems. Numerous subsequent 

studies into the clinical benefit of mammography screening have produced conflicting results as to their clinical 

benefit [17,18]. A sensitive system is generally desirable for screening-based tasks; however, a high rate of 

false-positives can distract the radiologist and potentially even lead to increased biopsies. 
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Glossary 

Artificial intelligence (AI): use of computers to model some or all aspects of human intelligence. 

Includes DL and other machine learning methods, as well as previous knowledge-based approaches that 

attempted to hard code inference rules. Convolutional neural network (CNN): form of DL that is particularly 

well suited to image analysis. CNNs use alternating convolutional and pooling operations to extract spatially 

invariant features from input data, while limiting the number of parameters in the network. 

Deep learning [DL; also known as deep neural networks (DNNs)]: form of machine learning that uses 

complex multilayered architectures to extract progressive degrees of abstraction from input data. End-to-end 

system: machine learning system that maps input data (after preprocessing) directly to predictions, without the 

use of a separate feature extraction step. Graphical processing units (GPUs): form of integrated circuit that has 

been designed specifically to efficiently alter memory for the display of computer graphics. Their highly 

parallelized structure is also efficient at the large-scale matrix operations that are used in neural networks. 

Hand-engineered features (also referred to as hand-crafted features): features used for prediction that 

have been manually selected or inferred by the designer of the model. 

Machine learning: application of statistical methods to adjust the parameters of a model based on 

training data, rather than being explicitly programmed. Preprocessing: transformations applied to an image prior 

to using it as input for a CNN, such as normalization, standardization, resizing, cropping, rotation, or color 

adjustment. 

Radiomics: field of research that aims to extract minable data from radiographic imaging. Random 

forest: machine learning algorithm that uses a large number of individually weak decision trees to generate 

robust predictions. 

While these initial forays into computer-aided diagnosis have not had widespread clinical uptake, it 

should be noted that they used technology that preceded the rise of DL, and recent head-to-head comparisons 

have demonstrated superior performance of DL over other sys-tems [19,20]. Several recent studies trained on 

large datasets have demonstrated comparable performance of DL systems to that of experts in common 

diagnostic tasks across a range of modalities, including chest X rays [21], head CT [22], spine MRI [23], 

mammography [20], and limb trauma X rays [24]. With the increasing evidence that CT chest screening can 

reduce lung cancer mortality, the automated detection and evaluation of lung nodules has generated considerable 

interest, including two large international challenge competitions [25]
i
. 

Organ or lesion segmentation (the automated delineation between tissues and tissue struc-tures) is often 

a necessary initial step that supports both further analysis and some forms of treatment, making it a key piece of 

automated systems. There has been extensive work done in this area across a range of organs and pathology 

types [26]. Within this research there has been a particular focus on segmentation tasks in neuroimaging, 

including numerous challenge competitions involving brain tumors, non-neoplastic lesions, and normal brain 

structures [27]. Arterys, a San Francisco based startup, recently received FDA clearance for a suite of DL-based 

oncology image analysis products
ii
, the first such approval. The software currently focuses on lung and liver 

analysis, with approval to ultimately expand to all solid tumors, and is able to segment lesions, track them across 

time, and assist with common radiological scoring systems. 

In addition to uses that directly impact diagnoses, DL has other applications that can improve the 

radiology workflow, including image quality enhancement, alignment of multiple images, content-based 

retrieval, report generation and semantic error flagging, and database mining for research [26,28]. Outside of 

cancer specific diagnosis, a DL-based system to triage CT head scans for radiologist review based on the 

presence or absence of critical findings, has demonstrated utility in a simulated clinical environment by 

decreasing the time taken for radiologists to review the more urgent images [29]. 

Knowledge discovery in radiology largely falls under the field of radiomics (or radiogenomics); the 

field that aims to extract minable data from imaging. In the past, approaches based on the use of a small number 

of hand-engineered features have identified imaging based correlates of molec-ular subtype and prognosis in 

numerous cancer types, including breast cancer [30], glioblastoma [31], renal cell cancer [32], and head and 

neck squamous cell carcinoma [33]. Similar work incorporating DL methods has demonstrated promising 

results in areas such as the prediction of isocitrate dehydrogenase (IDH), 1p19q, and O
6
-methylguanine-DNA-

methyltransferase (MGMT) status in gliomas [34–36], malignant potential in gastrointestinal stromal tumors 

[37], and of breast cancer molecular subtype [38] based on imaging. Ongoing work is needed to further 

elucidate the roles of hand-crafted features versus end-to-end DL systems in this field, as they will likely be 

complementary approaches. 

 

III. DIGITAL PATHOLOGY AND MORPHOLOGICAL ANALYSIS 
In contrast to the digitization of clinical radiology practice, pathology continues to predomi-nantly use 

glass slides and light microscopes, even in the most advanced hospitals. Recent advances in scanner technology 

and storage capacities have made it feasible for laboratories to implement fully digital systems, and several 
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laboratories have published case studies describ-ing their transition [39–41]. In Canada, whole slide imaging 

(WSI) has been used to facilitate intraoperative frozen sections for rapid diagnosis and consultations for over a 

decade, and was approved for primary diagnosis in 2013 [42,43]. However, in the USA progress has been in 

part 

Segmentation: delineation of different normal and/or abnormal structures or regions. Examples of segmentation 

tasks include outlining different organs on radiographic images and mapping regions of invasive cancer on 

histology. Support vector machine: machine learning algorithm that uses a set of hyperplanes to distinguish 

between classes of data with the widest possible margin. 

Whole slide imaging (WSI): use of advanced scanning technology to scan entire glass histology slides at a 

sufficiently high resolution for pathologic analysis (typically 200–400 X magnification). 

 

Max-pooling across 

 
 

Figure 1. Visualization of Convolutional Neural Network Layers and Functions. (A) An input image 

undergoes several rounds of convolution and pooling operations to extract progressively higher order features. 

(B) Following these, the feature maps are reshaped as a 1D vector and fed into a fully connected layer, which 

outputs the final prediction. (C) At each layer, the weights kernel is applied to the image, and the resulting value 

is run through an activation function (typically a rectified linear unit, or ReLU for short). (D) In the final layer a 

softmax function is applied, which generates probabilities for each output class. These are then compared with 

the ground-truth label to determine the error of the prediction. hampered by the regulatory environment, in 

which WSI systems have been considered Class III medical devices
iii

 – the highest risk devices, requiring 

rigorous premarket approval [44,45]. 

An important moment occurred in 2017, with FDA approval of the Phillips Intellisite as the first WSI 

system to be used for primary diagnosis. This approval was based on a study involving 16 pathologists across 

four sites that demonstrated equivalent error rates between manual diagnoses made on digital and glass slides
iv
. 

Since then, one American laboratory has already described their transition to WSI for primary diagnosis
v
. A 

fully digitized laboratory has numer-ous potential benefits for patient safety, workflow efficiency, and quality 

improvement [46], but challenges to implementation include the need for internal WSI system validation, high 

upfront cost and additional personal requirements, and pathologist acceptance [45]. Our hope is that, as the 
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Internet has provided huge amounts of general images to train DL models, the expanding access to WSI will be 

a similar catalyst for the growth of pathology specific applications. That 

 

Table 1. Landmark DL Papers and Other Important Resources 

 

 

Year Importance Refs 

   

1986 

First publication of the back-propagation method for adjusting the 

parameters in a neural [89] 

 network based on the gradient of the error.  

1990 

Earliest use of a CNN trained by back-propagation, in this case to 

recognize handwritten [90] 

 digits.  

 

 

 

 

 

 

 

2012 

Landmark paper in which a CNN nearly halved the previous best 

error rate for image 

 

recognition. This was largely what precipitated the current rise of 

DL. 

2015, 

2016 

Papers presenting the Inception and Resnet CNN architectures, which 

both achieved state 

 

of the art results in image recognition. Many of the papers cited in this 

review used modified 

 

versions of the models, including those attaining expert level 

performance 

 

2015 

Tensorflow and Keras are two of the most widely used software libraries 

for training neural 

ix,x 

 

 networks.  

2016 Review of DL written by three pioneers in the field. [1] 

2016 Comprehensive textbook of current DL methods and research. [5] 

 

said, it is crucial to recognize that slides that are digitized for clinical purposes contain confidential patient 

information as metadata bundled with the file, as well as in scanned labels within the image. This information 

must be appropriately removed prior to use for research, particularly in slides that are to be released as publicly 

available datasets or used by private companies. 

As noted, radiographic images are predominantly acquired digitally, allowing for the transition to a 

fully digital workflow with minimal loss of information. Tissue sections, in contrast, potentially contain more 

information than might be obtained in a digital image, particularly given the ability to vary depth of focus and 

apply high magnification to selected regions. The potential loss of fine detail, combined with concerns that 

digital slides take longer to review than glass ones, has reduced the attractiveness of WSI to pathologists [45]. 

Scanning capacity has only recently reached an appropriate scale to manage clinical slide volume. For example, 

the Vancouver General Hospital (VGH)
vi
, a typical large tertiary center, produces about 400 000 stained sections 

per year. A modern slide scanner requiring 2 min per slide can theoretically scan about 200 000 slides per year, 

although practically, this throughput may not be reached due to ongoing challenges in identifying and focusing 

on tissue regions, and interference from artifacts such as tissue folding and air bubbles. In addition to the capital 

and service costs of scanners, enterprise quality data storage would cost around US$100 000 per year to store all 

 

Table 2. Key Papers Applying DL to Cancer Diagnosis 

Year Medical field Task Refs 

2017 Dermatology Classification of benign versus malignant skin lesions [14] 

2017 Pathology Detection of breast cancer metastases in lymph nodes [12] 
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2018 Pathology Prediction of glioblastoma survival from histology [63] 

2018 Pathology 

Analysis of tumor infiltrating lymphocyte patterns in 13 

cancer types [63] 

  and correlation with molecular markers and survival  

2017 Radiology Detection of pulmonary nodules on chest CT [25] 

2017 Radiology 

Detection of 14 pathologies, including lung nodules and 

masses, [21] 

  on chest X ray.  

 

the slide output of VGH. These costs and challenges suggest that clinical scale WSI will only become 

compelling to most hospitals when it exhibits significant benefits. 

Improvements in slide imagers have motivated the development of a range of tools designed to make 

diagnosis and grading less subjective by quantifying image features known to correlate with disease state [47]. 

In tumor pathology, for instance, where nuclear morphology and cellular architecture are often strong 

determinants of disease severity, algorithms can be designed to detect dysplasia or invasive tumors by first 

segmenting nuclei from background, quantifying a number of nuclear features, such as size, shape, and spacing, 

and comparing these features with those typical of normal cells [48]. This approach has generated good results 

across many tissue types, but has been particularly successful in cytology [49] and hematology [50], where the 

segmentation of single cells on a homogeneous background is less challenging [47]. Developments in image 

processing and statistical methods have enabled greater sophistica-tion in the design of these algorithms, and a 

state-of-the-art algorithm might use thousands of features to derive its predictions [51]. 

Despite their continued improvements, feature-based algorithms often suffer from two limi-tations. The 

first is a lack of consistency in the performance of the same algorithms with runs on sections prepared with 

different staining protocols or scanned under different conditions. Algorithms that depend on accurate 

segmentation can be sensitive to changes in color and brightness and can yield inconsistent results on samples 

from different centers, even when stain normalization is used [52]. Other preanalytic variables that can influence 

algorithm performance include tissue quality, fixation, slice thickness, and any artifacts (glue, air bubbles, etc.). 

The second issue is that these algorithms rely on a prespecified set of features to classify the tissue. Because 

they can only classify tissue as well as the features that distinguish between them, there is a ceiling to their 

performance, even when a large amount of data is available to refine the algorithm [12]. 

 

DL in Pathology 

DL provides a significantly different approach to histopathology image analysis than feature-based 

methods. As end-to-end systems, DL systems dispense with the initial feature extraction step. Instead, after 

basic preprocessing, images are fed directly into the model, which by virtue of a large parameter space 

incorporates its own automated feature extraction into the earlier layers of the network. This approach requires 

modification when large, high-resolution images are used. Whole digital slides, unlike other common medical 

image types, can be >1 GB each, which is too large to be processed by the model in their entirety. Instead, the 

typical approach is to crop the slide into numerous small image patches; process these as essentially independent 

of each other; and then aggregate the patch-level predictions to make an overall slide-level prediction or a 

heatmap of regions of interest (Figure 2). Early work in 2014 using this approach showed promising results in 

the identification of invasive ductal breast carcinoma [53]. 

In a seminal paper in 2017, Ehteshami Bejnordi et al. published the results of an international 

competition in the identification of metastatic breast cancer deposits in lymph nodes [12]. This was an ideal task 

for initial medical applications of DL, as it is well defined, repetitive, and high volume, yet potentially error 

prone for humans. Twenty-three different teams submitted predictions on a test set of 129 WSIs of lymph nodes, 

which were compared against two benchmarks set by human experts. A panel of pathologists with a soft time 

constraint of 2 h was used to approximate real world performance, while a single pathologist without time 

constraints, who spent over 30 h evaluating the slides, provided an estimate for the upper limit of human 

performance. The top algorithms had similar results as the pathologist without time constraints, and generally 

exceeded those of the panel pathologists. These results provide the strongest evidence to date that DL models 

have the potential to reach expert pathologist level performance; albeit on one narrow task. An important caveat 

is that these algorithms were only trained on metastatic cancer and likely would not have detected other 

pathology that can be present in lymph nodes, such as lymphomas or reactive conditions. While this study did 

not include external validation, an algorithm developed using this dataset has since been validated on slides 

from an independent laboratory [54] and demonstrated clinical utility by improving pathologist accuracy and 

efficiency in detecting metastases on digital slides [55]. The follow-up challenge in 2017, extended this work to 

a more clinically realistic scenario involving the nodal staging of simulated patients comprised of sets of five 

slides [56]. 
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Numerous other studies have applied DL to similar tasks in pathology. Other work in breast cancer has 

included the segmentation of tumor regions in breast resection slides [57], differentiation between several 

different types both of benign breast changes and cancer histotypes [58], and the identification of cancer based 

solely on alterations of the surrounding stroma [59]. Another high-volume, repetitive task that is well suited to 

automation is the evaluation of prostate biopsies and resection specimens, and preliminary work has demon-

strated histological grading of tissue microarray specimens with interrater variability between the computer and 

two reference pathologists similar to that between the pathologists themselves [60]. In this study, visualization 

of the most salient features used by the model to make predictions confirmed that it was focusing on the 

epithelium, with a particular emphasis on the junctions between glands. More recently, a team from Google 

published their large-scale study on the scoring of prostate cancer on prostatectomy specimens [61]. DL can also 

be used to quantify important features in slides, with extensive work having been done in mitosis identification 

[62]; a particularly challenging task in WSI, given the lack of 3D information (the z axis). 

In the area of knowledge discovery, the Cancer Genome Atlas (TCGA)
vii

 digital slide repository has 

already proven to be a rich resource for combining histology with clinical and molecular data, leading to several 

high-quality publications. Mobadersany et al. developed what they have termed a survival CNN in order to 

predict glioma outcomes [63]. Based on histology alone, their model was able to differentiate outcomes within 

molecular subtypes of glioma, while it obtained improved prognostic accuracy by combining histology with 

common genomic markers. Heat map visualizations indicated that higher risk was predicted in regions with 

conventionally malignant histological features, as well as in regions with previously unrecognized features, such 

as adjacent regions of edema and sparsely infiltrated brain, illustrating the potential of DL to identify useful 

features that could be added to routine histological evaluation by pathologists. It should be noted that this study 

was only evaluated on TCGA slides and it remains to be seen whether the prognostic significant of the 

algorithm applies to external data sets. 

Saltz et al. used a CNN-based computational staining methodology to map the patterns of tumor-

infiltrating lymphocytes in over 5000 slides across 13 cancer types and correlate it with molecular subtypes and 

survival [64]. They used an iterative process to develop their network, in which a limited number of slides were 

annotated and used to train the initial model, and the predictions of this model were then corrected by 

pathologists and fed back in as additional training examples. This was repeated until a satisfactory performance 

was reached; at which point the model could be deployed on the full dataset. In addition to its insights on the 

immune response within tumors, this studyprovides a blueprint for theuse ofautomated image processing 

tofacilitate morphology-based research on a scale that would not be feasible if pathologists had to annotate 

every slide. 

In prostate cancer, DL was used to automate the identification of the most abnormal regions on slides 

(analogous to what is done manually for tissue microarray construction) in order to predict speckle-type POZ 

protein (SPOP) status [65]. This study trained the model on frozen slides from the TCGA archive but then tested 

institutional paraffin embedded tissue, demonstrating consistency of the algorithm despite varying slide quality. 

Furthermore, the authors used an innovative strategy to address the challenge of dataset imbalance with rare 

mutations, by forming an ensemble of multiple models trained on subsets of the data with matched numbers of 

positive and negative slides. Similarly, in lung cancer, DL has been used to predict the status of several driver 

mutations in adenocarcinoma [66], as well as overall outcomes based on morphological features [67]. DL has 

also been used to model clinical behavior from genomic profiling [68], which could be combined with image 

analysis to further refine these predictions [69]. 

 

IV. FUTURE PROSPECTS AND CHALLENGES 
The rise of AI has unquestionably been a disruptive force in a number of industries and is poised to 

cause even more disruption. This potential has inevitably and understandably led to clashing viewpoints as to its 

role and incorporation in society in the future. Unlike most historical technological advancements, which have 

predominantly affected manual work, AI is expected to have a significant impact on so-called knowledge 

workers. In a survey that asked several hundred machine learning experts about the effect of AI on a range of 

jobs, the median prediction was that AI will outperform humans in performing surgery by the year 2053 (with a 

range of 2030–2100), just later than the predicted time AI will be able to write a bestselling novel, but earlier 

than that predicted for performing mathematical research [70]. There is robust debate among pathologists as to 

the projected future role of human specialists and the potential for AI to exceed human diagnostic capabilities 

[71,72]. However, in considering these issues, it is important to remember the inherent imprecision of 

technological prognosti-cation and the role of perspectives and biases in influencing individual opinions [73]. 

The research discussed in this review has certainly been promising, and demonstrated convincingly that 

in some tasks AI can match the performance of human medical experts. Beyond the ongoing work in further 

optimizing DL algorithms, there are significant barriers to adapting this technology into widespread medical use 

and to truly approximate the cognitive processes of a human physician. Most DL uses have been highly task 
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specific, while humans are able to make associations that can improve performance across multiple related 

tasks. Despite the limitations of feature-engineered approaches, there will likely be benefits in combining 

semantic knowledge with visual analysis, particularly in distinguishing between rare diagnoses with limited 

examples available. Furthermore, conclusions in radiology and pathol-ogy are often not based just on a single 

scan or specimen, but also on correlation with previous ones and other medical history [72]. 

DL is in general data hungry – significantly more so than earlier feature-engineered approaches that are 

less prone to overfitting – and the acquisition of sufficient training data is an ongoing challenge in nearly all 

domains. While unsupervised and semisupervised learning approaches exist, for most medical tasks, data sets 

require manual annotation or at least curation [74]. Depending on the complexity of the task this may be 

appropriate for trained research personnel or require the full input from medical experts. As the early layers in 

DNNs almost invariably learn very general image features, networks that have been pretrained on large general 

image sets can be fine-tuned on medical data, which can decrease the amount of data required and overall 

training time [75,76]. Furthermore, novel methods are being developed to facilitate slide annotation, such as 

incorporation directly into the clinical workflow by tracking pathologist movements as they read slides [77], or 

by combining expert and crowd-sourced annotations [78]. 

In comparison to the feature-engineered approaches that have been discussed, DL has been criticized 

for being a ‘black box’, in which it is not entirely clear how the model generates outputs from a given input. 

While this argument certainly has some merit, methods to visualize the activation functions of a network and the 

types of images that activate a given neuron have helped to elucidate the inner workings of these algorithms, and 

this remains an area of active research [79,80]. An analogy can be drawn between the interpretability issue in 

DL and FDA-approved drugs with unknown mechanisms of action [81], as well as our incomplete under-

standing of the human cognitive diagnostic process [82]. Regardless, given the inability of current DL 

algorithms to explain their diagnostic process, several issues would need to be addressed prior to their 

implementation in clinical practice, including the degree of physician supervision that is required and 

determining who is ultimately liable for machine error. In this regard, cues can potentially be taken from the 

similarly high-risk field of autonomous driving, where five levels of system autonomy have been defined, 

ranging from basic driver assistance to full automation without human backup [83]. 

Despite the hype and high expectations surrounding DL in medicine, it is crucial that medical 

regulators and practitioners proceed with caution and insist that new algorithms are rigorously validated in 

realistic environments prior to use for patient care [84]. One particular challenge of regulating AI algorithms is 

that they are not static products, and can continue to change and improve even once deployed, as new training 

data becomes available. At this point, the FDA regulates DL-based algorithms as medical devices
viii

, and several 

have been approved for radiology in the past 2 years, but none for pathology image analysis. The FDA has 

signaled plans to streamline its process for approval of AI algorithms, but it is still unclear what precise 

regulatory framework will enable the rapid advances in this field while maintaining patient safety [85,86]. For 

the foreseeable future it is likely that AI will remain in a diagnostic support role, in which it can help detect 

pathologies, automate routine tasks, and improve workflow, but a human will retain responsibility for all final 

decisions and reports. In Figure 3, we illustrate a hypothetical use of AI in the management of a patient with a 

brain tumor, from the initial radiographic imaging to the pathology report from the tumor resection. However, 

given the current state of the field, specific details as to the implementation of this technology remain largely 

speculative. 
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Figure 3. Proposed Method of Incorporating Artificial Intelligence into Diagnostic Medicine Workflow. 

 

(A) A patient’s initial magnetic resonance imaging scan is analyzed by a computer-aided diagnostic 

system, which generates a preliminary report and flags it for high priority review by a radiologist. (B) The 

resected tumor specimen is received in the laboratory, and the glass slides are digitized as part of the workflow. 

These are then analyzed by the computer system, and its findings integrated with those of the pathologist to 

generate a final report. Abbreviations: CAD, computer-aided diagnosis; DDx, differential diagnosis. 

Regardless of the eventual impact of DL specifically, the practice of diagnostic medicine will continue 

to change as new technologies are introduced. If DL algorithms are able to generate widespread clinician 

acceptance, the cost of the computational infrastructure needed to deploy DL algorithms (as opposed to train 

them) is likely minimal in the context of overall healthcare spending [28]. Should AI ultimately be able to 

automate a good portion of image analysis, the job of a radiologist or pathologist may shift to increasingly 

emphasize other tasks, such as correlation with the medical records, formulating reports, liaising with clinicians, 

departmental quality control, and participating in multidisciplinary conferences. This technology will also 

necessitate a shift in the training of diagnostic physicians to better understand the computa-tional techniques 

involved, with some suggesting the creation of an entirely new specialty or even a merger of pathology and 

radiology [87,88]. 

 

Concluding Remarks 

In summary, DL is an exciting development in the ongoing pursuit of computer-aided medical 

diagnostics. Research over the last several years indicates its potential to attain human expert level performance, 

but the technology appears to remain distant from widespread clinical deployment (see Outstanding Questions). 

AI will likely change the practice of diagnostic medicine, and we are optimistic that it will ultimately lead to 

improved patient safety and quality of medical care. 
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Outstanding Questions 

How can the process of annotating training data be better integrated into the clinical workflow? 

Which clinical tasks are appropriate for DL? 

How much data is needed for any par-ticular DL task? 

How can multiple research groups be coordinated to assemble high-quality datasets? 

Can a DL system be designed that will have broad task capability? 

How can DL and hand-engineered fea-tures best be combined? 

Will the molecular and clinical predic-tions generated by DL be clinically useful? 

How can we better understand the mechanics through which DL systems generate predictions? 

How will DL diagnostic systems be regulated and what will be the required level of human oversight? 

Who will be responsible for medical errors made by this technology? 

What will be the impact of AI on physi-cian employment? 

How will society react towards the implementation of AI systems in medicine? 
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